We cannot do crossing over
Let's rewrite the expression
#(x+1)/(x-1)<=2#
#(x+1)/(x-1)-2<=0#
#((x+1)-2(x-1))/(x-1)<=0#
#((x+1-2x+2))/(x-1)<=0#
#((3-x))/(x-1)<=0#
Let #f(x)=((3-x))/(x-1)#
Let's build a sign chart
#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaaaaa)##1##color(white)(aaaaaaa)##3##color(white)(aaaaaaa)##+oo#
#color(white)(aaaa)##x-1##color(white)(aaaaa)##-##color(white)(aaaa)##||##color(white)(aa)##+##color(white)(aaaaaaa)##+#
#color(white)(aaaa)##3-x##color(white)(aaaaa)##+##color(white)(aaaa)##||##color(white)(aa)##+##color(white)(aa)##0##color(white)(aaaa)##-#
#color(white)(aaaa)##f(x)##color(white)(aaaaaa)##-##color(white)(aaaa)##||##color(white)(aa)##+##color(white)(aa)##0##color(white)(aaaa)##-#
Therefore,
#f(x)>=0# when #x in (-oo,1) uu [3,+oo)#
graph{(x+1)/(x-1)-2 [-12.66, 12.65, -6.33, 6.33]}