How do you find the indefinite integral of #int (5t^8-2t^4+t+3)dt#?
1 Answer
Nov 8, 2017
Explanation:
#"integrate each term using the "color(blue)"power rule"#
#•color(white)int(ax^n)=a/(n+1)x^(n+1)to(n!=-1)#
#rArrint(5t^8-2t^4+t+3)dt#
#=5/9t^9-2/5t^5+1/2t^2+3t+c#
#"where c is the constant of integration"#