How do you find the vertex and the intercepts for #f(x) = x^2 + 4x - 5#?

1 Answer
Nov 9, 2017

#"see explanation"#

Explanation:

#"given a parabola in standard form ";y=ax^2+bx+c#

#"then the x-coordinate of the vertex can be found using"#

#•color(white)(x)x_(color(red)"vertex")=-b/(2a)#

#f(x)=x^2+4x-5" is in standard form"#

#"with "a=1,b=4,c=-5#

#rArrx_(color(red)"vertex")=-4/2=-2#

#"substitute this value into "f(x)" for y coordinate"#

#y_(color(red)"vertex")=(-2)^2+4(-2)-5=-9#

#rArrcolor(magenta)"vertex "=(-2,-9)#

#"to obtain the intercepts"#

#• " let x = 0, in equation for y-intercept"#

#• " let y = 0, in equation for x-intercepts"#

#x=0toy=-5larrcolor(red)"y-intercept"#

#y=0tox^2+4x-5=0#

#"the factors of - 5 which sum to + 4 are + 5 and - 1"#

#rArr(x+5)(x-1)=0#

#"equate each factor to zero and solve for x"#

#x+5=0rArrx=-5#

#x-1=0rArrx=1#

#x=-1" and "x=-5larrcolor(red)"x-intercepts"#
graph{x^2+4x-5 [-20, 20, -10, 10]}