If #sinx-cosx=1/3#, find #cos(4x)#?
2 Answers
cos 4x = - 0.58
Explanation:
Use trig identity:
In this case
Calculator and unit circle give -->
a. x - 45 = 13.63 -->
4x = 234^@52 -->
b. x - 45 = 180 - 13.63 = 166.37
Check by calculator.
x = 58.63 --> sin x = 0.85 --> cos x = 0.52.
sin x - cos x = 0.33 = 1/3. Proved
x = 211.37 --> sin x = - 0.52 --> cos x = - 0.85
sin x - cos x = - 0.52 - (-0.85) = 0.33 = 1/3. Proved
Explanation:
We have
#sin^2x + cos^2x - 2sinxcosx = 1/9#
#1 - 1/9 = sin(2x)#
#8/9 = sin(2x)#
We know that
#sin^2(2x) + cos^2(2x) = 1#
#(8/9)^2 + cos^2(2x) = 1#
#cos^2(2x) =1 - 64/81#
#cos^2(2x) = 17/81#
We can rewrite
#cos(4x)# as#2cos^2(2x) - 1#
#cos(4x) = 2xx17/81 - 1#
#cos(4x) = - 47/81#