Let's rewrite the inequality
#5x+4<=3x^2#
#3x^2-5x-4>=0#
Let #f(x)=3x^2-5x-4#
The roots of the quadratic equation #3x^2-5x-4=0#, are
# x = ( 5+-sqrt ((-5)^2-(4)* (3) * (-4)) ) /(6)=(5+-sqrt(73))/(6) #
#x_1=(5-sqrt73)/6=-0.59#
#x_2=(5+sqrt73)/6=2.26#
Let's build the sign chart
#color(white)(aaaa)##x##color(white)(aaaaa)##-oo##color(white)(aaaaaaa)##x_1##color(white)(aaaaaa)##x_2##color(white)(aaaa)##+oo#
#color(white)(aaaa)##x-x_1##color(white)(aaaaa)##-##color(white)(aaaa)##0##color(white)(aaa)##+##color(white)(aaaa)##+#
#color(white)(aaaa)##x-x_2##color(white)(aaaaa)##-##color(white)(aaaa)####color(white)(aaaa)##-##color(white)(aa)##0##color(white)(aa)##+#
#color(white)(aaaa)##f(x)##color(white)(aaaaaaa)##+##color(white)(aaaa)##0##color(white)(aaa)##-##color(white)(aa)##0##color(white)(aa)##+#
Therefore,
#f(x)>=0# when # x in (-oo, x_1] uu[x_2, +oo)#
graph{3x^2-5x-4 [-11.39, 11.11, -6.615, 4.635]}