What is the vertex form of #y=-3x^2-x+9#?

1 Answer
Dec 28, 2017

#y=-3(x+1/6)^2+109/12#

Explanation:

#"the equation of a parabola in "color(blue)"vertex form"# is.

#color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))#

#"where "(h,k)" are the coordinates of the vertex and a"#
#"is a multiplier"#

#"given the equation in standard form "y=ax^2+bx+c#

#"then the x-coordinate of the vertex is"#

#x_(color(red)"vertex")=-b/(2a)#

#y=-3x^2-x+9" is in standard form"#

#"with "a=-3,b=-1,c=9#

#rArrx_(color(red)"vertex")=-(-1)/(-6)=-1/6#

#"substitute this value into the equation for y"#

#y_(color(red)"vertex")=-3(-1/6)^2+1/6+9=109/12#

#rArr(h,k)=(-1/6,109/12)" and "a=-3#

#rArry=-3(x+1/6)^2+109/12larrcolor(red)"in vertex form"#