How do you find the points of horizontal tangency of #r=3cos2thetasectheta#?

1 Answer
Dec 31, 2017

#theta=+-25.92^@#

Explanation:

Let us find #(dy)/(dx)# in terms of #r# and #theta# using #x=rcostheta# and #y=rsintheta#.

As such #(dx)/(d theta)=(dr)/(d theta)costheta-rsintheta#

and #(dy)/(d theta)=(dr)/(d theta)sintheta+rcostheta#

i.e. #(dy)/(dx)=((dr)/(d theta)sintheta+rcostheta)/((dr)/(d theta)costheta-rsintheta)#

As #r=3cos2thetasectheta#

#(dr)/(d theta)=-6sin2thetasectheta+3cos2thetasecthetatantheta#

and #(dy)/(dx)=0#, when

#sintheta(3cos2thetasecthetatantheta-6sin2thetasectheta)+rcostheta=0#

or #3cos2thetatan^2theta-12sin^2theta+rcostheta=0#

or #r=(12sin^2theta-3cos2thetatan^2theta)/(costheta)#

or #r=12sin^2thetasectheta-3cos2thetasecthetatan^2theta#

or #r=12sin^2thetasectheta-rtan^2theta#

i.e. #r=(12sin^2thetasectheta)/(1+tan^2theta)=(2tantheta)/(1+tan^2theta)*6sintheta#

= #6sin2thetasintheta#

or #3cos2thetasectheta=6sin2thetasintheta#

or #cos2theta=sin^2 2theta#

or #cos2theta=1-cos^2 2theta#

or #cos^2 2theta+cos2theta-1=0#

or #cos2theta=(-1+sqrt5)/2=0.618#

Observe that we cannot have #cos2theta=(-1-sqrt5)/#

or #2theta=+-51.83^@#

or #theta=+-25.92^@#

i.e. at #y=rsintheta=+-3cos51.83^@sec25.92^@sin25.92^@#

= #3xx0.618xx1.112xx0.437=0.9#

The graph of curve is shown below:

graph{(x^3+xy^2-3x^2+3y^2)(y^2-0.81)=0 [-5, 5, -2.5, 2.5]}