Solve (5 questions)?
(Only use partial fractions where possible)
#\intx\sinx\cosxdx#
#\int(x^P)/(x(x^(2P)+1)dx#
#\int(\lnx)/(x\sqrt(1+(\lnx)^2)# #dx#
#\int\sqrt(1+e^x)dx#
#\int(x+\sin^-1(x))/(\sqrt(1-x^2))# #dx#
(Only use partial fractions where possible)
#\intx\sinx\cosxdx# #\int(x^P)/(x(x^(2P)+1)dx# #\int(\lnx)/(x\sqrt(1+(\lnx)^2)# #dx# #\int\sqrt(1+e^x)dx# #\int(x+\sin^-1(x))/(\sqrt(1-x^2))# #dx#
2 Answers
Explanation:
Not sure we really need partial fractions except in one case:
integrate by parts:
Substitute
Substitute
Substitute
Explanation:
Here is the answer to
#I = int x(1/2sin(2x))dx#
#I = int (xsin(2x))/2dx#
#I = 1/2int xsin(2x) dx#
Now let
Now recall that integration by parts is
#int udv =uv - int vdu#
#int xsin(2x)dx = -1/2xcos(2x) - int -1/2cos(2x)dx#
#int xsin(2x)dx= -1/2xcos(2x) + int 1/2cos(2x)dx#
#int xsin(2x)dx= -1/2xcos(2x) + 1/4sin(2x) + C#
#1/2int xsin(2x)dx= 1/8sin(2x) - 1/4xcos(2x) + C#
Hopefully this helps!