How do you graph #y=3csc(x+(2pi)/3)#?

1 Answer
Jun 7, 2018

As below

Explanation:

Standard form of cosecant function is #color(crimson)(y = A sin (Bx - C) + D#

Given #color(blue)(y = 3 csc (x + (2pi)/3)#

#:. A = 3, B = 1, C = - (2pi) / 3, D = 0#

#color(crimson)("Amplitude" = |A| =" None" # for cosecant function.

#color(crimson)("Period " = (2pi) / |B| = 2pi)#

#color(crimson)("Phase Shift " = -C / B = -(2pi) / 3), (2pi) / 3# "to the left".

#color(crimson)("Vertical Shift" = 0#

graph{3 csc(x + (2pi)/3) [-10, 10, -5, 5]}