How do you find the vertex and intercepts for #f(x) = 2x^2 - 4x + 3#?
1 Answer
Jun 14, 2018
Explanation:
#"express the quadratic in "color(blue)"vertex form"#
#•color(white)(x)y=a(x-h)^2+k#
#"where "(h,k)" are the coordinates of the vertex and a is"#
#"a multiplier"#
#"using the method of "color(blue)"completing the square"#
#f(x)=2(x^2-2x+3/2)#
#color(white)(f(x))=2(x^2+2(-1)x+1-1+3/2)#
#color(white)(f(x))=2(x-1)^2+1#
#"vertex "=(1,1)#
#"for y-intercept set x = 0"#
#f(0)=3rArr(0,9)#
#"for x-intercepts set y = 0"#
#2(x-1)^2+1=0#
#(x-1)^2=-1/2#
#"this has no real solutions hence no x-intercepts"#
graph{2x^2-4x+3 [-10, 10, -5, 5]}