How do you evaluate sin(arcsin(1/2) + arccos (0)) ?

1 Answer
Jun 22, 2018

Under the multivalued interpretation,

sin (arcsin(1/2) + arccos(0)) =pm \sqrt{3}/2

Explanation:

Let's use the multivalued interpretation of arcsin and arccos.

The real question is what is

sin arccos (a /b) and cos arcsin (a /b)

When we have the cosine of an inverse sine or the sine of an inverse cosine the denominator b is the hypotenuse and the other side is sqrt{b^2-a^2}, with indeterminate sign. So,

sin arccos(a/b) = pm \sqrt{b^2-a^2}/b

cos arcsin (a/b) = pm sqrt(b^2-a^2)/b

sin (arcsin(1/2) + arccos(0))

= sin arcsin(1/2) cos arccos 0 + cos arcsin(1/2) sin arccos 0

= 1/2 (0) + (pm \sqrt{3}/2)(pm 1)

=pm \sqrt{3}/2