How do you evaluate #sin(arcsin(1/2) + arccos (0)) #?

1 Answer
Jun 22, 2018

Under the multivalued interpretation,

# sin (arcsin(1/2) + arccos(0)) =pm \sqrt{3}/2#

Explanation:

Let's use the multivalued interpretation of #arcsin# and #arccos.#

The real question is what is

#sin arccos (a /b)# and #cos arcsin (a /b)#

When we have the cosine of an inverse sine or the sine of an inverse cosine the denominator #b# is the hypotenuse and the other side is #sqrt{b^2-a^2},# with indeterminate sign. So,

#sin arccos(a/b) = pm \sqrt{b^2-a^2}/b#

#cos arcsin (a/b) = pm sqrt(b^2-a^2)/b #

# sin (arcsin(1/2) + arccos(0))#

#= sin arcsin(1/2) cos arccos 0 + cos arcsin(1/2) sin arccos 0#

#= 1/2 (0) + (pm \sqrt{3}/2)(pm 1)#

# =pm \sqrt{3}/2#