How do you graph #y=1/2 tan(pi/4 x + pi/4)#?

1 Answer
Jun 26, 2018

As below.

Explanation:

Standard form of tangent function is #y = A tan (Bx - C) + D#

#"Given : " y = (1/2) tan ((pi/4)x + pi/4)#

#A = 1/2, b = pi/4, c = -pi/4, D = 0#

#"Amplitude " = |A| = "NONE for tangent function"#

#"Period " = pi/|B| = pi/ (pi/4) = 4#

#"Phase Shift" = -C / B = -(pi/4) / (pi/4) = -1, " 1 to the LEFT"#

#"Vertical Shift " = D = 0#

graph{(1/2) tan((pi/4)x + pi/4) [-10, 10, -5, 5]}