What is #Tan(arcsin(3/5)+arccos(5/7))#?
2 Answers
Explanation:
Given that
Explanation:
Consider right angled triangles with sides:
#3, 4, 5#
#5, 2sqrt(6), 7#
Remember:
#sin(theta) = "opposite"/"hypotenuse"#
#cos(theta) = "adjacent"/"hypotenuse"#
#tan(theta) = "opposite"/"adjacent"#
Hence:
#tan(arcsin(3/5)) = 3/4#
#tan(arccos(5/7)) = (2sqrt(6))/5#
Note that:
#tan(alpha+beta) = (tan alpha + tan beta) / (1 - tan alpha tan beta)#
So we find:
#tan(arcsin(3/5)+arccos(5/7)) = tan(arctan(3/4)+arctan((2sqrt(6))/5))#
#color(white)(tan(arcsin(3/5)+arccos(5/7))) = (3/4+(2sqrt(6))/5)/(1-(3/4)((2sqrt(6))/5))#
#color(white)(tan(arcsin(3/5)+arccos(5/7))) = (15+8sqrt(6))/(20-6sqrt(6))#
#color(white)(tan(arcsin(3/5)+arccos(5/7))) = ((15+8sqrt(6))(10+3sqrt(6)))/((20-6sqrt(6))(10+3sqrt(6)))#
#color(white)(tan(arcsin(3/5)+arccos(5/7))) = (150+45sqrt(6)+80sqrt(6)+144)/(200-108)#
#color(white)(tan(arcsin(3/5)+arccos(5/7))) = (294+125sqrt(6))/92#
#color(white)(tan(arcsin(3/5)+arccos(5/7))) = 147/46+125/92sqrt(6)#