How do you solve #(x-1)(3x-4)>=0#?
3 Answers
The solution is
Explanation:
The inequality is
Let
Let's build a sign chart
Therefore,
graph{(x-1)(3x-4) [-1.453, 3.413, -0.497, 1.936]}
Explanation:
Given inequality
setting
setting
Specify the points
Explanation:
#"find the zeros of left side by equating to zero"#
#(x-1)(3x-4)=0#
#x-1=0rArrx=1#
#3x-4=0rArrx=4/3#
#(x-1)(3x-4)=3x^2-7x+4larrcolor(blue)"in standard form"#
#"Since "a>0" then minimum turning point "uuu#
#(x-1)(3x-4)>=0" then"#
#x<=1" or "x>=4/3#
#x in(-oo,1]uu[4/3,oo)#
graph{3x^2-7x+4 [-5, 5, -2.5, 2.5]}