Let #triangleABC " be the triangle with corners at"#
#A(4,7), B(3,5) and C(6,2)#
Let #bar(AL) , bar(BM) and bar(CN)# be the altitudes of sides #bar(BC) ,bar(AC) and bar(AB)# respectively.
Let #(x,y)# be the intersection of three altitudes
Slope of #bar(AB) =(7-5)/(4-3)=2/1=2#
#bar(AB)_|_bar(CN)=>#slope of # bar(CN)=-1/2# ,
# bar(CN)# passes through #C(6,2)#
#:.#The equn. of #bar(CN)# is #:y-2=-1/2(x-6)#
#=>2y-4=-x+6#
#=>x=6-2y+4#
#i.e. color(red)(x=10-2y.....to (1)#
Now, Slope of #bar(AB) =2# and #bar(AB)# passes through
#A(4,7)#
So, eqn. of #bar(AB)# is: #y-7=2(x-4)#
#=>y-7=2x-8#
#=>color(red)(2x-y=1...to(2)#
from #(1)and (2)#
#2(10-2y)-y=1#
#=>20-4y-y=1=>-5y=-19=>color(blue)(y=19/5=3.8#
From #(1) ,#
#x=10-2(19/5)==>color(blue)(x=12/5=2.4#
#=>N(12/5,19/5) and C(6,2)#
Using Distance formula,
#CN=sqrt((12/5-6)^2+(19/5-2)^2)=sqrt(324/25+81/25)#
#:.CN=sqrt(405/25)#
#:.CN=sqrt(81/5)~~16.2#