Question #57960

2 Answers
Feb 25, 2017

#cosx+sin(x/2)=0#

#cos(x/2+x/2)+sin(x/2)=0#

#1-2sin^2(x/2)+sin(x/2)=0#

#2sin^2(x/2)-sin(x/2)-1=0#

Let #y=sin^2(x/2)=0#

#2y^2-2y+x-1=0#

#2y(y-1)+1(y-1)=0#

#2y+1=0#
#y-1=0#

#2sin(x/2)+1=0#

#sin(x/2)=-1/2#

#x=360n-60, nin ZZ#

#sin(x/2)=1#

#x=720n+180,ninZZ#

Feb 25, 2017

#pi + 4kpi#
#pi/3 + 4kpi#
#(5pi)/3 + 4kpi#

Explanation:

Use trig identity: #cos 2a = 1 -2sin^2 a#
In this case:
#1 - 2sin^2 (x/2) + sin (x/2) = 0#
Bring it to standard form:
#2sin^2 (x/2) - sin x - 1 = 0#
Solve this quadratic equation for #sin (x/2)#:
Since a + b + c = o, use shortcut.
The 2 real roots are: #sin (x/2) = 1# and #sin (x/2) = c/a = - 1/2#
Use trig table and unit circle -->
A. #sin (x/2) = 1# --> #x/2 = pi/2 + 2kpi# --> #x = pi + 4kpi#

B. #sin (x/2) = - 1/2# --> unit circle -->
a. #x/2 = (7pi)/6 + 2kpi# --> #x = (7pi)/3 + 4kpi# or #x = pi/3 + 4kpi#
b. #x/2 = (11pi)/6 + 2kpi# --> #x = (11pi)/3 + 4kpi#, or
#x = (5pi)/3 + 4kpi#