How do we use De Moivre's Thereom to simplify #(2-2i)^8#?

1 Answer
May 11, 2017

DeMoivre Theorem states that #(a+bi)^n=(r(costheta+isintheta))^n=r^n(cos(ntheta)+isin(ntheta))#
Answer: #4096#

Explanation:

DeMoivre's Theorem allows us to compute the powers and roots of complex trigonometric expressions:
#(a+bi)^n=(r(costheta+isintheta))^n=r^n(cos(ntheta)+isin(ntheta))#

Original question: Use DeMoivre's Thereom to simplify #(2-2i)^8#

#(2-2i)^8#

We can factor out a #2# inside the base of the power:
#=(2(1-i))^8#

Now, we convert #1-i# to trigonometric form:

Note: #1-i=sqrt(2)(cos(pi/4)+isin(-pi/4))#

So:
#=(2sqrt(2)(cos(pi/4)+isin(-pi/4))^8#

Now we can apply DeMoivre's Theorem:
#=(2sqrt(2))^8(cos(-8(pi/4))+isin(-8(pi/4)))#
which we can simplify:
#=4096(cos(-2pi)-isin(-2pi))#
#=4096(1-i(0))#
#=4096#

Therefore, our final answer is #4096#.