Show that the dot product of any two unit vectors is the sum of the product of the components?
1 Answer
We have:
# bb(ul(A)) = A_1bb(ul(i)) + A_2bb(ul(j)) + A_3bb(ul(k)) #
# bb(ul(B)) = B_1bb(ul(i)) + B_2bb(ul(j)) + B_3bb(ul(k)) #
So then by definition the dot product is
# bb(ul(A)) * bb(ul(B)) = (A_1bb(ul(i)) + A_2bb(ul(j)) + A_3bb(ul(k))) * (B_1bb(ul(i)) + B_2bb(ul(j)) + B_3bb(ul(k))) #
Using the distributive property of the dot product:
# bb(ul(A)) * bb(ul(B)) = A_1bb(ul(i)) * (B_1bb(ul(i)) + B_2bb(ul(j)) + B_3bb(ul(k))) + #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ A_2bb(ul(j)) * (B_1bb(ul(i)) + B_2bb(ul(j)) + B_3bb(ul(k))) + #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ A_3bb(ul(k)) * (B_1bb(ul(i)) + B_2bb(ul(j)) + B_3bb(ul(k)))#
# \ \ \ \ \ \ \ \ = A_1bb(ul(i)) * B_1bb(ul(i)) + A_1bb(ul(i)) * B_2bb(ul(j)) + A_1bb(ul(i)) * B_3bb(ul(k)) + #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ A_2bb(ul(j)) * B_1bb(ul(i)) + A_2bb(ul(j)) * B_2bb(ul(j)) + A_2bb(ul(j)) * B_3bb(ul(k)) + #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ A_3bb(ul(k)) * B_1bb(ul(i)) + A_3bb(ul(k)) * B_2bb(ul(j)) + A_3bb(ul(k)) * B_3bb(ul(k)) #
# \ \ \ \ \ \ \ \ = A_1B_1bb(ul(i)) * bb(ul(i)) + A_1B_2bb(ul(i)) * bb(ul(j)) + A_1B_3bb(ul(i)) * bb(ul(k)) + #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ A_2B_1bb(ul(j)) * bb(ul(i)) + A_2B_2bb(ul(j)) * bb(ul(j)) + A_2B_3bb(ul(j)) * bb(ul(k)) +#
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ A_3B_1bb(ul(k)) * bb(ul(i)) + A_3B_2bb(ul(k)) * bb(ul(j)) + A_3B_3bb(ul(k)) * bb(ul(k)) #
We now use the property that the dot product of a unit vector with itself is unity whilst the dot product of the unit vector with any other perpendicular vector is zero:
# bb(ul(A)) * bb(ul(B)) = A_1B_1(1) + A_1B_2(0) + A_1B_3(0) + #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ A_2B_1(0) + A_2B_2(1) + A_2B_3(0) +#
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ A_3B_1(0) + A_3B_2(0) + A_3B_3(1) #
# \ \ \ \ \ \ \ \ = A_1B_1 + A_2B_2 + A_3B_3 # QED