A circle has a center that falls on the line #y = 2/3x +7 # and passes through #(5 ,7 )# and #(1 ,2 )#. What is the equation of the circle?

2 Answers
Jun 2, 2018

see below

Explanation:

the centre of the circle is on the intersection point between the assigned line and the line axis of the segment that joint the two points
straight for two points:
#(y-y_a)/(y_b-y_a) = (x-x_a)/(x_b-x_a)#
#(y-7)/(2-7) = (x-5)/(1-5)#
#(y-7)/-5 = (x-5)/-4#
#(y-7)/-5 = (x-5)/-4#
#-4 (y-7) = -5 (x-5))#
#-4 y +28 = -5 x+ 25#
#-4 y = -5 x-3#
#y= 5/4 x + 3/4#

middle point M
#X_m =( X_b+X_a) /2=(5+1)/2=3#
#Y_m =( Y_b+Y_a) /2=(7+2)/2=9/2#

perpendicular line (m =-1/m') passing through M
#y-y_M= m (x-x_m)#
#y-9/2= -4/5(x-3)#
#y= -4/5 x +12/5+9/2#
#y= -4/5 x +59/10#

making the system and solving with comparison
#2/3 x +7= -4/5 x +69/10#
#22/15 x =-1/10#

#X_C=-3/22#
#Y_C=-1/11+7=76/11#

#R=sqrt((X_c-X_a)^2 + (Y_c-Y_a)^2)=sqrt((-3/22-1)^2 + (76/11-2)^2)=#...

i have no mere time....

equation of circle
#(x-x_c)^2 + (y-y_c)^2 = R^2#

Jul 3, 2018

#(x+3/44)^2+(y-153/22)^2=49733/1936#.

Explanation:

Let, #C(h,k)# and #r# be the centre and radius of the reqd. circle #S.#

Since, #C# is on the line #y=2/3x+7," we have, "k=2/3h+7#.

#:. C(h,k)=C(h,2/3h+7)#.

The points #P(5,7) and Q(1,2) in S#.

# :. CP^2=r^2=CQ^2#.

#:.(h-5)^2+(2/3h+7-7)^2=(h-1)^2+(2/3h+7-2)^2#.

#:.(h^2-10h+25)+4/9h^2=h^2-2h+1+4/9h^2+20/3h+25#.

#:.-10h+2h-20/3h=1#.

#:. h=-3/44#.

#:. k=2/3h+7=2/3(-3/44)+7=153/22#.

Finally, #r^2=(h-5)^2+(2/3h)^2=(-3/44-5)^2+(-1/22)^2#.

#;. r^2=49733/1936#.

#:. S : (x-h)^2+(y-k)^2=r^2, i.e., #

#(x+3/44)^2+(y-153/22)^2=49733/1936#.