We use ABC for points; and a,b,c for opposite sides.
angle between a and b = #hat C = 1/12 pi#
angle between b and c = #hat A = 2/3 pi#
#hat B = pi - hat C - hat A = pi (1 - 1/12 - 2/3) = 1/4 pi#
Let #H in AC#, such that #BH# is perpendicular to #AC#.
#|BH| = h, |AH| = m# and we want #S_Delta = 1/2 * 20 * h#
#tan hat A = h / m Rightarrow m = h / tan hat A#
#tan hat C = h / (20 - m) Rightarrow 20 - m = h / tan hat C#
#20 - h / tan hat A = h / tan hat C#
#20 = h ( 1 / tan hat A + 1 / tan hat C)#
#20 = h ( cos hat A / sin hat A + cos hat C / sin hat C)#
#h = 20 * frac{sin A sin C}{sin A cos C + sin C cos A} = 20/ sin frac{3 pi}{4} * sin frac{2 pi }{3} sin frac{pi}{12}#
#S_Delta = 10h = 200 * 2/sqrt 2 * sqrt 3 / 2 * sin frac{pi }{12}#