For #f(t)= (sin^2t,t/pi-2)# what is the distance between #f(pi/4)# and #f(pi)#?
1 Answer
Explanation:
Find the two points by plugging in
#f(pi/4)=(sin^2(pi/4),(pi/4)/pi-2)#
#color(white)(f(pi/4))=((sqrt2/2)^2,1/4-2)#
#color(white)(f(pi/4))=(2/4,1/4-8/4)#
#color(white)(f(pi/4))=(1/2,-7/4)#
And
#f(pi)=(sin^2(pi),pi/pi-2)#
#color(white)(f(pi))=(0^2,1-2)#
#color(white)(f(pi))=(0,-1)#
So, we need to find the distance between the points
#d=sqrt((x_2-x_1)^2+(y_2-y_1)^2)#
Thus the distance we want is
#d=sqrt((0-1/2)^2+(-1-(-7/4))^2)#
#color(white)d=sqrt((-1/2)^2+(-1+7/4)^2)#
#color(white)d=sqrt((-1/2)^2+(3/4)^2)#
#color(white)d=sqrt(1/4+9/16)#
#color(white)d=sqrt(13/16)#
#color(white)d=sqrt13/4#