# How do solve x^2<=8x and write the answer as a inequality and interval notation?

##### 1 Answer
Dec 16, 2016

The answer is $x \in \left[0 , 8\right]$ or $0 \le x \le 8$

#### Explanation:

Let's rewrite the equation as

${x}^{2} - 8 x \le 0$, $\implies$, $x \left(x - 8\right) \le 0$

Let $f \left(x\right) = x \left(x - 8\right)$

Let's do a sign chart

$\textcolor{w h i t e}{a a a a}$$x$$\textcolor{w h i t e}{a a a a}$$- \infty$$\textcolor{w h i t e}{a a a a}$$0$$\textcolor{w h i t e}{a a a a}$$8$$\textcolor{w h i t e}{a a a a}$$+ \infty$

$\textcolor{w h i t e}{a a a a}$$x$$\textcolor{w h i t e}{a a a a a a a a}$$-$$\textcolor{w h i t e}{a a a}$$+$$\textcolor{w h i t e}{a a a}$$+$

$\textcolor{w h i t e}{a a a a}$$x - 8$$\textcolor{w h i t e}{a a a a a}$$-$$\textcolor{w h i t e}{a a a}$$-$$\textcolor{w h i t e}{a a a}$$+$

$\textcolor{w h i t e}{a a a a}$$f \left(x\right)$$\textcolor{w h i t e}{a a a a a a}$$+$$\textcolor{w h i t e}{a a a}$$-$$\textcolor{w h i t e}{a a a}$$+$

Therefore,

$f \left(x\right) \le 0$ when $x \in \left[0 , 8\right]$, or $0 \le x \le 8$