How do you divide #( 3i-1) / (8i -4 )# in trigonometric form?

1 Answer
Mar 2, 2016

#1/(2sqrt2)xxe^(i(alpha-beta)#, where #alpha=tan^-1(-3)# and #beta=tan^-1(-2)#

Explanation:

#(a+bi)# an be written in as #sqrt(a^2+b^2)e^(i(tan^-1(b/a))#

Hence, #(3i-1)=(-1+3i)=sqrt(1^2+3^2)(e^(itan^-1(-3/1)))=sqrt10e^(itan^-1(-3))#

Similarly, #(8i-4)=(-4+8i)=sqrt(4^2+8^2)(e^(itan^-1(-8/4)))=sqrt80e^(itan^-1(-2))#

Hence #(3i-1)/(8i-4)=(sqrt10e^(itan^-1(-3)))/(sqrt80e^(itan^-1(-2)))#

or #sqrt(1/8)xxe^(i(tan^-1(-3))-(tan^-1(-2))# or

#1/(2sqrt2)xxe^(i(alpha-beta)#, where #alpha=tan^-1(-3)# and #beta=tan^-1(-2)#