How do you divide #( -i+1) / (2i +10 )# in trigonometric form?

1 Answer
Apr 6, 2018

#(-i+1)/(2i+10) =1/2(2/13 - i3/13)#

Explanation:

A complex number #z# is of the form

#z=a+bi#

We define the Polar coordinates of #z# to be #(r,theta)#, as seen in the image below.

http://mathonweb.com/help_ebook/html/complex_2.htm

From this diagram we get some more properties:

#r=sqrt(a^2+b^2)#

#sin theta = b/r => b=rsintheta#
#costheta=a/r =>a=rcostheta#

If we substitute #b# and #a# into the definition of a complex number, we have

#z=rcostheta+irsintheta = r(costheta+isintheta)#

Our trigonometric sum resembles #color(red)("Euler's identity")#:

#e^(icolor(red)alpha)=coscolor(red)alpha+isincolor(Red)(alpha#

Thus,

#z=re^(itheta)#

In our case, it'd be easier to write them in this exponential form then transform it into trigonometric form.

Let #color(blue)(z_1 = -i+1# and #color(blue)(z_2 = 2i+10#.

We do not need to find #theta_1# and #theta_2# now, so we will let them as that.

#r_1 = sqrt(a_1^2+b_1^2) = sqrt(1^2+(-1)^2) = sqrt2#
#r_2 = sqrt(a_2^2+b_2^2)=sqrt(100+4)=sqrt(104)=2sqrt(26)#

#:. z_1/z_2=(r_1e^(itheta_1))/(r_2e^(itheta_2))#

#z_1/z_2 = sqrt2/(2sqrt26) * e^(i(theta_1-theta_2)#

#z_1/z_2 = 1/(2sqrt13) * e^(i(theta_1-theta_2)#

We can still apply Euler's identity to #e^(i(theta_1-theta_2))#. We have:

#e^(i(theta_1-theta_2)) = cos(theta_1-theta_2)+isin(theta_1-theta_2)#

The #color(blue)("Difference formula")# for cosine and sine is, as follows:

#cos(a-b)=cosacosb+sinasinb#
#sin(a-b) = sinacosb-cosasinb#

#cos(theta_1 - theta_2) = costheta_1costheta_2+sintheta_1sintheta_2#
#sin(theta_1-theta_2) = sintheta_1costheta_2-costheta_1sintheta_2#

From the properties we got earlier, we know:

#costheta_1 = 1/sqrt2#
#sintheta_1 = -1/sqrt2#

#costheta_2 = 5/sqrt26#
#sintheta_2=1/sqrt26#

After we calculate the values we needed, we reach this:

#cos(theta_1-theta_2) = 2/sqrt13#
#sin(theta_1-theta_2)= -3/sqrt13#

Finally, we get:

#z_1/z_2 = 1/(2sqrt13) (2/sqrt13 -i3/sqrt13)#

#z_1/z_2 = 1/2(2/13 - i3/13)#

#:.#

#(-i+1)/(2i+10) =1/2(2/13 - i3/13)#