How do you find the indefinite integral of int (-24x^5-10x) dx?

1 Answer
Oct 17, 2016

=-4x^6-5x^2+C

Explanation:

Knowing the method of polynomial integration that says:
color(red)(intx^ndx=x^(n+1)/(n+1))

int(-24x^5-10x)dx
=int(-24x^5)dx-int(10xdx)
=(-24/color(red)6)x^color(red)(5+1)-10/color(red)2(x^(color(red)1+1))
=-4x^6-5x^2+C