How do you integrate #int y^2sqrtydy#?
1 Answer
Jan 4, 2017
#int \ y^2sqrt(y) \ dy = 2/7y^3sqrt(y) + c#
Explanation:
Using fractional powers, and the rule of indices
#int \ y^2sqrt(y) \ dy = int \ y^2 \ y^(1/2) \ dy#
# " "= int \ y^(5/2) \ dy#
Then using the power rule for integration
#int \ y^2sqrt(y) \ dy = y^(7/2)/(7/2) + c#
# " "= 2/7y^(7/2) + c#
# " "= 2/7y^3sqrt(y) + c#