How do you sketch the graph #f(x)=2x^4-26x^2+72#?
1 Answer
See explanation...
Explanation:
#f(x) = 2x^4-26x^2+72#
#color(white)(f(x)) = 2((x^2)^2-13(x^2)+36)#
#color(white)(f(x)) = 2(x^2-4)(x^2-9)#
#color(white)(f(x)) = 2(x-2)(x+2)(x-3)(x+3)#
So the graph of this function intercepts the
It intercepts the
Note that
#f'(x) = 8x^3-52x = 2((2x)^2-26)x#
So this quartic has local minima at:
#x = +-sqrt(26)/2 ~~ +-5.1/2 = +-2.55#
We find:
#f(+-sqrt(26)/2) = 2(13/2)^2-26(13/2)+72 = 169/2-169+72 = -25/2#
So this quartic function is a classic "W" shaped curve, symmetric about the
#(-3, 0), (-sqrt(26)/2, -25/2), (-2, 0), (0, 72), (2, 0), (sqrt(26)/2, -25/2), (3, 0)#
graph{2x^4-26x^2+72 [-10, 10, -20, 80]}