How do you sketch the graph #f(x)=2x^4-26x^2+72#?

1 Answer
Oct 12, 2016

See explanation...

Explanation:

#f(x) = 2x^4-26x^2+72#

#color(white)(f(x)) = 2((x^2)^2-13(x^2)+36)#

#color(white)(f(x)) = 2(x^2-4)(x^2-9)#

#color(white)(f(x)) = 2(x-2)(x+2)(x-3)(x+3)#

So the graph of this function intercepts the #x# axis at #x=+-2# and #x=+-3#.

It intercepts the #y# axis at #(0, 72)#, where it has a local maximum.

Note that #f(x)# is an even function, symmetric about the #y# axis.

#f'(x) = 8x^3-52x = 2((2x)^2-26)x#

So this quartic has local minima at:

#x = +-sqrt(26)/2 ~~ +-5.1/2 = +-2.55#

We find:

#f(+-sqrt(26)/2) = 2(13/2)^2-26(13/2)+72 = 169/2-169+72 = -25/2#

So this quartic function is a classic "W" shaped curve, symmetric about the #y# axis, passing through:

#(-3, 0), (-sqrt(26)/2, -25/2), (-2, 0), (0, 72), (2, 0), (sqrt(26)/2, -25/2), (3, 0)#

graph{2x^4-26x^2+72 [-10, 10, -20, 80]}