How do you sketch the graph #y=x^3+2x^2+x# using the first and second derivatives?
1 Answer
Jan 26, 2017
Refer Explanation section
Explanation:
Given -
#y=x^3+2x^2+x#
#dy/dx=3x^2+4x+1#
#(d^2y)/(dx^2)=6x+4#
#dx/dy=0=>3x^2+4x+1#
#x=[(-b)+-sqrt(b^2-(4*a*c))]/(2a)#
#x=[(-4)+-sqrt(4^2-(4*3*1))]/(2*3)#
#x=[(-4)+-sqrt(16-(12))]/(6)#
#x=[(-4)+-sqrt(16-12)]/(6)#
#x=[(-4)+-sqrt(16-12)]/(6)#
#x=[(-4)+-sqrt(4)]/(6)#
#x=[(-4)+-2]/(6)#
#x=[-4-2]/(6)=(-6)/6=-1#
#x=[-4+2]/(6)=(-2)/6=-1/3#
At
#(d^2y)/(dx^2)=6(-1)+4=-6+4=-2#
At
Hence the function has a maximum.
At
At
#(d^2y)/(dx^2)=6(-1/3)+4=-2+4=2#
At
Hence the function has a minimum.
At
graph{x^3+2x^2+x [-10, 10, -5, 5]}
.