We cannot do crossing over
Let's rearrange the inequality
#(2x)/(x-2)<=3#
#(2x)/(x-2)-3<=0#
#(2x-3(x-2))/(x-2)<=0#
#(2x-3x+6)/(x-2)<=0#
#(6-x)/(x-2)<=0#
Let #f(x)=(6-x)/(x-2)#
Let's build the sign chart
#color(white)(aaaa)##x##color(white)(aaaaa)##-oo##color(white)(aaaaaa)##2##color(white)(aaaaaaa)##6##color(white)(aaaaaa)##+oo#
#color(white)(aaaa)##x-2##color(white)(aaaaa)##-##color(white)(aaaa)##||##color(white)(aaa)##+##color(white)(a)##0##color(white)(aaaa)##+#
#color(white)(aaaa)##6-x##color(white)(aaaaa)##+##color(white)(aaaa)##||##color(white)(aaa)##+##color(white)(a)##0##color(white)(aaaa)##-#
#color(white)(aaaa)##f(x)##color(white)(aaaaaa)##-##color(white)(aaaa)##||##color(white)(aaa)##+##color(white)(a)##0##color(white)(aaaa)##-#
Therefore,
#f(x)<=0# when #x in (-oo,2)uu [6,+oo)#