How do you solve the right triangle given b=1, c=2, and A= 120?

1 Answer
Jun 26, 2016

a=1.4,B=37.76^@ ,C=22.24^@a=1.4,B=37.76,C=22.24

Explanation:

By properties of triangle we know,
In DeltaABC ,"a,b,c are opposite sides of angles A,B,C"

Given A=120, C=180-120-B=60-B

a/sinA=b/sinB=c/sinC

a/sin120=1/sinB=2/sin(60-B)
So
=>sin(60-B)/sinB=2

=>(sin60cosB)/sinB-cos60=2

=>sqrt3/2cotB-1/2=2

=>sqrt3cotB-1=4

=>cotB=5/sqrt3

=>tanB=sqrt3/5

=>B=tan^-1(sqrt3/5)=37.76^@

:.C=60-37.76=22.24^@

Now

a=sin120/sinB=sqrt3/(2*sin(37.76))=1.4