# How do you solve x^2-2x-8<0 using a sign chart?

Dec 24, 2016

The answer is x in ] -2,4 [

#### Explanation:

We factorise the expression

${x}^{2} - 2 x - 8 = \left(x + 2\right) \left(x - 4\right)$

Let, $f \left(x\right) = \left(x + 2\right) \left(x - 4\right)$

Now we can make the sign chart

$\textcolor{w h i t e}{a a a a}$$x$$\textcolor{w h i t e}{a a a a}$$- \infty$$\textcolor{w h i t e}{a a a a}$$- 2$$\textcolor{w h i t e}{a a a a}$$4$$\textcolor{w h i t e}{a a a a}$$+ \infty$

$\textcolor{w h i t e}{a a a a}$$x + 2$$\textcolor{w h i t e}{a a a a a}$$-$$\textcolor{w h i t e}{a a a a}$$+$$\textcolor{w h i t e}{a a a a}$$+$

$\textcolor{w h i t e}{a a a a}$$x - 4$$\textcolor{w h i t e}{a a a a a}$$-$$\textcolor{w h i t e}{a a a a}$$-$$\textcolor{w h i t e}{a a a a}$$+$

$\textcolor{w h i t e}{a a a a}$$f \left(x\right)$$\textcolor{w h i t e}{a a a a a a}$$+$$\textcolor{w h i t e}{a a a a}$$-$$\textcolor{w h i t e}{a a a a}$$+$

Therefore,

$f \left(x\right) < 0$, when x in ] -2,4 [