Fist we find the roots of the equation, ie the values of x st y=0:
y=0 => -(x-2)(x+2)(x-4)=0
:. (x-2)(x+2)(x-4)=0
:. x=2, x=-2, x=4
Next we find the critical points, ie the values for which y'=0, we will need to multiply out as a cubic in order to this:
y=-(x-2)(x+2)(x-4)
:. y=-(x-2)(x^2-4x+2x-8)
:. y=-(x-2)(x^2-2x-8)
:. y=-(x^3-2x^2-8x-2x^2+4x+16)
:. y=-(x^3-4x^2-4x+16)
:. y=-x^3+4x^2+4x-16
So, differentiating wrt x gives:
:. y'=-3x^2+8x+4
y'=0 => -3x^2+8x+4 = 0
:. 3x^2-8x-4 = 0
:. 3x^2-8x-4 = 0
This quadratic does not factorise, so we use the quadratic formula:
x=(-(-8)+-sqrt((-8)^2-4(3)(-4)))/(2(3))
:. x=(8+-sqrt(64+48))/(6)
:. x=(8+-sqrt(112))/(6)
:. x=-0.43, 3.10 (2dp)
, or equally we can solve by completing the square:
3x^2-8x-4 = 0
:. 3(x^2-8/3x-4/3) = 0
:. (x^2-8/3x-4/3) = 0
:. (x-8/6)^2 -(8/6)^2-4/3 = 0
:. (x-8/6)^2 -64/36-4/3 = 0
:. (x-8/6)^2 = 64/36+48/36
:. (x-8/6)^2 = 112/36
:. (x-8/6) = +-sqrt(112/36)
:. x=8/6 +-sqrt(112/36)
again leading to x=-0.43, 3.10 (2dp)
The coordinates of these points are then given by using the original formula for y to give:
x=-0.43 => y=-16.9 (1dp)
x=3.10 => y=5.0 (1dp)
These values of x correspond to the critical points (or turning points). we now use the second derivative to determine the nature (max, min or point of inflection) of these points.
from earlier, y'=-3x^2+8x+4
:. y''=-6x+8
x=-0.43 => y''=10.5 > 0 (1dp)
x=3.10 => y''=-10.6<0 (1dp)
So we can now determine the nature of the turning points which are:
(-0.43,-16.9) minimum
(3.10, 5.0) maximum
We now have enough to sketch the curve:
graph{-(x-2)(x+2)(x-4) [-10, 10, -20, 20]}