How do you use the first and second derivatives to sketch #y = x / (x^2 - 9)#?

1 Answer
May 11, 2018

Please see the explanation below

Explanation:

The function is

#y=x/(x^2-9)#

The domain is #x in (-oo,-3) uu(-3,3) uu(3,+oo)#

The first derivative is calculated with the quotient rule

#(u/v)'=(u'v-uv')/(v^2)#

Here,

#u=x#, #=>#, #u'=1#

#v=x^2-9#, #=>#, #v'=2x#

#y'=dy/dx=(1*(x^2-9)-(x*2x))/(x^2-9)^2#

#=(x^2-9-2x^2)/(x^2-9)^2#

#=(-9-x^2)/(x^2-9)^2#

There are no critical points

#y'!=0#, #AA x in D_y#

Let's calculate the second derivative with the quotient rule

#u=-9-x^2#, #=>#, #u'=-2x#

#v=(x^2-9)^2#, #=>#, #v'=2(x^2-9)*2x#

Therefore,

#y''=(d^2y)/dx^2=(-2x(x^2-9)^2-(-9-x^2)(4x(x^2-9)))/(x^2-9)^4#

#=(-2x^3+18x+36x+4x^3)/(x^2-9)^3#

#=(2x^3+54x)/(x^2-9)^3#

#=(2x(x^2+27))/(x^2-9)^3#

When #y''=0#, there is a point of inflection.

#(2x(x^2+27))/(x^2-9)^3=0#

#=>#, #x=0#

Let's make a variation chart

#color(white)(a)##" Interval "##color(white)(aaa)##(-oo, -3)##color(white)(aaa)##(-3,0)##color(white)(aaa)##(0,3)##color(white)(aaa)##(3,+oo)#

#color(white)(a)##" Sign y'' "##color(white)(aaaaaaaa)##-##color(white)(aaaaaaaaa)##+##color(white)(aaaaaa)##-##color(white)(aaaaaa)##+#

#color(white)(a)##" y "##color(white)(aaaaaaaaaaaaa)##nn##color(white)(aaaaaaaaaa)##uu##color(white)(aaaaaa)##nn##color(white)(aaaaaa)##uu#

graph{x/(x^2-9) [-10, 10, -5, 5]}