Let z1 = √2(cos 7pi/4 + i sin 7pi/4) and z2 = 2(cos 5pi/3 + i sin 5pi/3), how do you find z1/z2?

1 Answer
Apr 13, 2016

#z_1/z_2=1/sqrt2[cos(pi/12)+isin(pi/12)]#

Explanation:

A complex number of form #rcostheta+irsintheta# can also be written as #r*e^(itheta)#.

Hence, #z_1=sqrt2(cos(7pi/4)+isin(7pi/4))=sqrt2e^(i7pi/4)#

and #z_2=2(cos(5pi/3)+isin(5pi/2))=2e^(i5pi/3)#

Hence #z_1/z_2=sqrt2/2xe^(i(7pi/4-5pi/3))=1/sqrt2*e^(i((21pi-20pi)/12))=1/sqrt2*e^(i(pi)/12)#

= #1/sqrt2[cos(pi/12)+isin(pi/12)]#