The hypotenuse of a right triangle is 52 in. One leg of the triangle is 8 in. more than twice the length of the other. What is the perimeter of the triangle?

1 Answer
Dec 1, 2016

The perimeter of the triangle is 120120 cm.

Explanation:

Let hypotenuse of the right triangle be h=52h=52in.
One leg of the right triangle be l_1l1in.
Other leg of the right triangle be l_2=2*l_1+8l2=2l1+8in.
We know h^2 = l_1^2+l_2^2 or 52^2=l_1^2+(2l_1+8)^2 or 2704 = l_1^2+4l_1^2+32l_1+64 or 5l_1^2+32l_1-2640=0h2=l21+l22or522=l21+(2l1+8)2or2704=l21+4l21+32l1+64or5l21+32l12640=0. This is a quadratic eqqution of which a=5;b=32;c=-2640 ; l_1= (-32+-sqrt(32^2-4*5*(-2640)))/(2*5) or l_1=20.0 or l_1= -26.4a=5;b=32;c=2640;l1=32±32245(2640)25orl1=20.0orl1=26.4 Length can not be negative number. So l_1=20 ; l_2=2*20+8=48 ;h =52l1=20;l2=220+8=48;h=52
The perimeter of the triangle is P= l_1+l_2+h=20+48+52=120P=l1+l2+h=20+48+52=120cm [Ans]