What is the antiderivative of # (x+1)(2x-1)#?

2 Answers

#int(x+1)(2x-1)dx=2/3x^3+1/2x^2-x+"c"#

Explanation:

Find an antiderivative of a function is the same as finding the integral.

So we want to find #int(x+1)(2x-1)dx=int2x^2+x-1dx#

To find this, we use the power rule

#intx^n dx=1/(n+1)x^(n+1)+"c"#

#rArrint2x^2+x-1dx=2/3x^3+1/2x^2-x+"c"#

Mar 24, 2018

#=>(2/3x^2+1/2x-1)x + C#

where #C# is an arbitrary constant from the integration.

Explanation:

We start with:

#\int(x+1)(2x-1)dx#

We multiply the two binomials:

#=\int(2x^2+2x-x-1)dx#

#=\int(2x^2+x-1)dx#

We break up the integral into three separate integrals:

#=\int2x^2dx + \intxdx + \int -dx#

#=color(blue)(2intx^2dx) + color(orange)(intxdx)-color(green)(intdx)#

Now we integrate:

#=color(blue)(2(1/3x^3))+color(orange)(1/2x^2)-color(green)(x)+C#

Simplifying:

#=2/3x^3+1/2x^2-x+C#

#=(2/3x^2+1/2x-1)x + C#

where #C# is an arbitrary constant from the integration.