What is the slope and intercept for y+2=1/4(x-1)?

Oct 27, 2016

We'll have to get this into a $y = m \cdot x + b$ form

Explanation:

Subtract $2$ from both sides:
$\to y + \cancel{2} - \cancel{2} = \frac{1}{4} \left(x - 1\right) - 2$

Now, lose the brackets:
$\to y = \frac{1}{4} x - \frac{1}{4} - 2$
Or:
$\to y = \frac{1}{4} x - 2 \frac{1}{4}$

Where $\frac{1}{4}$ is the slope and $\left(0 , - 2 \frac{1}{4}\right)$ is the $y$-intercept
graph{0.25x-2.25 [-6.83, 13.17, -6.76, 3.24]}

Oct 27, 2016

Slope: $\frac{1}{4} \textcolor{w h i t e}{\text{XXXXXX}}$y-intecept: $\left(- 2 \frac{1}{4}\right)$

Explanation:

Remember that the general slope-intercept form is
$\textcolor{w h i t e}{\text{XXX}} y = \textcolor{g r e e n}{m} x + \textcolor{b l u e}{b}$
with slope of $\textcolor{g r e e n}{m}$ and y-intercept of $\textcolor{b l u e}{b}$

Given
$\textcolor{w h i t e}{\text{XXX}} y + 2 = \frac{1}{4} \left(x - 1\right)$
we wish to convert this into slope-intercept form.

$\textcolor{w h i t e}{\text{XXX}} y + 2 = \frac{1}{4} x - \frac{1}{4}$

$\textcolor{w h i t e}{\text{XXX}} y = \textcolor{g r e e n}{\frac{1}{4}} x + \left(\textcolor{b l u e}{- 2 \frac{1}{4}}\right)$

So this line has a slope of $\textcolor{g r e e n}{\frac{1}{4}}$
and a y-intercept of color(blue)(""(- 2 1/4)) 