How do you integrate #int (x^2+x+1)/sqrtxdx#?

2 Answers
Dec 20, 2016

#int (x^2+x+1)/sqrt(x)dx=(2/5x^3+2/3x^2+2x)/sqrt(x)#

Explanation:

As the integral is a linear operator, we can integrate term by term:

#int (x^2+x+1)/sqrt(x)dx= int x^2/sqrt(x)dx+int x/sqrt(x)dx+int 1/sqrt(x)dx = int x^(3/2)dx+intx^(1/2)dx +int x^(-1/2)dx = 2/5x^(5/2)+2/3x^(3/2)+2x^(1/2)= (2/5x^3+2/3x^2+2x)/sqrt(x)#

Dec 20, 2016

The answer is #=2(x^(5/2)/5+x^(3/2)/3+sqrtx)+C#

Explanation:

We need

#intx^ndx=x^(n+1)/(n+1)+C ( n!=-1)#

Therefore,

#int((x^2+x+1)dx)/sqrtx#

#=int(x^2/sqrtx+x/sqrtx+1/sqrtx)dx#

#=int(x^(3/2)+sqrtx+x^(-1/2))dx#

#=x^(5/2)/(5/2)+x^(3/2)/(3/2)+x^(1/2)/(1/2)+C#

#=2(x^(5/2)/5+x^(3/2)/3+x^(1/2))+C#