How do you find the indefinite integral of #int (7/sqrt(1-u^2))du#?

1 Answer
Jan 17, 2017

#int 7/sqrt(1-u^2) du = 7 arcsin u +C#

Explanation:

Substitute:

#u = sint#
#du = costdt#

#int 7/sqrt(1-u^2) du = 7int cost/sqrt(1-sin^2t) dt = 7int cost/sqrt(cos^2t) dt #

As the integrand function is defined for #u in (-1,1)#, we have that #t = arcsinu in (-pi/2,pi/2)#.

In this interval #cost > 0# so #sqrt(cos^2t) = cost#

#int 7/sqrt(1-u^2) du = 7 int cost/cost dt = 7int dt = 7t+C = 7 arcsin u +C#