How do you integrate #int x^3/sqrt(16-x^2)# by trigonometric substitution?

3 Answers
Feb 4, 2017

The integral is #(16 - x^2)^(3/2)/3 - 16sqrt(16 - x^2) + C#

Explanation:

Apply the substitution #x = 4sintheta#. Then #dx = 4costheta d theta#.

#=>4int (4sintheta)^3/sqrt(16 - (4sintheta)^2) * costheta d theta#

#=>4int (64sin^3theta)/sqrt(16 - 16sin^2theta) * costheta d theta#

#=>4int (64sin^3theta)/sqrt(16(1 - sin^2theta)) * costheta d theta#

#=>4int (64sin^3theta)/sqrt(16cos^2theta) * costheta d theta#

#=>4int (64sin^3theta)/(4costheta) * costheta d theta#

#=>4int (64sin^3theta)/4d theta#

#=>4int 16sin^3theta d theta#

#=>64intsintheta(sin^2theta) d theta#

#=>64intsintheta(1 - cos^2theta)d theta#

Let #u = costheta#. Then #du = -sintheta d theta# and #d theta = -(du)/sintheta#.

#=>-64intsintheta(1 - u^2) * (du)/sintheta#

#=>-64int1 - u^2 du#

#=>-64(u - 1/3u^3) + C#

#=>-64u + 64/3u^3 + C#

Reverse the substitution.

#=>-64costheta + 64/3cos^3theta + C#

Since the initial substitution was #sintheta = x/4#, then #costheta = sqrt(16 - x^2)/4#.

#=>-(64sqrt(16 - x^2))/4 + 64/3(sqrt(16 - x^2)/4)^3 + C#

#=>-16sqrt(16 - x^2) + (16 - x^2)^(3/2)/3 + C#

Hopefully this helps!

Feb 4, 2017

#intx^3/(sqrt(16-x^2)) dx=#
#1/3(16-x^2)^(3/2)-16sqrt(16-x^2)+"C"#

Explanation:

#intx^3/(sqrt(16-x^2))dx#

If we look at the denominator, it looks like a rearrangement of Pythagoras' theorem, #a^2+b^2=c^2 rarrc^2-b^2=a^2#

So the length of the hypotenuse of our triangle is #4# and the length of the opposite is #x#. This means that the length of the adjacent is #sqrt(16-x^2)#.

If we rewrite #x# using trigonometric ratios, we get #sintheta=x/4 rarrx=4sintheta#

We can also rewrite the adjacent in the same way:

#costheta=(sqrt(16-x^2))/4#

#sqrt(16-x^2)=4costheta#

If we differentiate #x#, we get:

#dx/(d theta)=4costheta#

#dx=4costhetad theta#

#intx^3/(sqrt(16-x^2))dx=intx^3(4costheta)/(4costheta)d theta=intx^3d theta#

Let's rewrite #x^3# using our #x# function:

#x=4sintheta#

#x^3=(4sintheta)^2=64sin^3theta#

Now our integral is #int64sin^3thetad theta=64 intsin^3thetad theta#.

#=64intsin^2theta sintheta d theta=64intsintheta(1-cos^2theta)d theta#

#u=costheta#

#(du)/(d theta)=-sintheta#

#d theta=-(1/sintheta)du#

#64intsintheta(1-cos^2theta)d theta=-64intcancel(sin)theta(1-u^2)cancel(1/sintheta)du#

#=-64int(1-u^2)du=-64(u-1/3u^3)+"C"#

Substitute #u# for #costheta# and #costheta# for #sqrt(16-x^2)/4#

#-64(u-1/3u^3)+"C"=-64(sqrt(16-x^2)/4-(1/3)(16-x^2)^(3/2)/64)+"C"#

#=1/3(16-x^2)^(3/2)-16sqrt(16-x^2)+"C"#

Feb 9, 2017

Contd.

Explanation:

We solve the Problem is required to be solved using trigo. substn.,