#intx^3/(sqrt(16-x^2))dx#
If we look at the denominator, it looks like a rearrangement of Pythagoras' theorem, #a^2+b^2=c^2 rarrc^2-b^2=a^2#
So the length of the hypotenuse of our triangle is #4# and the length of the opposite is #x#. This means that the length of the adjacent is #sqrt(16-x^2)#.
If we rewrite #x# using trigonometric ratios, we get #sintheta=x/4 rarrx=4sintheta#
We can also rewrite the adjacent in the same way:
#costheta=(sqrt(16-x^2))/4#
#sqrt(16-x^2)=4costheta#
If we differentiate #x#, we get:
#dx/(d theta)=4costheta#
#dx=4costhetad theta#
#intx^3/(sqrt(16-x^2))dx=intx^3(4costheta)/(4costheta)d theta=intx^3d theta#
Let's rewrite #x^3# using our #x# function:
#x=4sintheta#
#x^3=(4sintheta)^2=64sin^3theta#
Now our integral is #int64sin^3thetad theta=64 intsin^3thetad theta#.
#=64intsin^2theta sintheta d theta=64intsintheta(1-cos^2theta)d theta#
#u=costheta#
#(du)/(d theta)=-sintheta#
#d theta=-(1/sintheta)du#
#64intsintheta(1-cos^2theta)d theta=-64intcancel(sin)theta(1-u^2)cancel(1/sintheta)du#
#=-64int(1-u^2)du=-64(u-1/3u^3)+"C"#
Substitute #u# for #costheta# and #costheta# for #sqrt(16-x^2)/4#
#-64(u-1/3u^3)+"C"=-64(sqrt(16-x^2)/4-(1/3)(16-x^2)^(3/2)/64)+"C"#
#=1/3(16-x^2)^(3/2)-16sqrt(16-x^2)+"C"#