Given the vectors #u=<<2,2>>#, #v=<<-3,4>>#, and #w=<<1,-2>>#, how do you find #(3w*v)u#?
1 Answer
Feb 8, 2017
#(3w * v)vec(u) = <<-66,-66>>#
Explanation:
Inner Product Definition
If
# ulu * ulv = u_1v_1 + u_2v_2 #
So,
Then the inner product
# 3vec(w) * vec(v) = 3<<1,-2>> * <<-3,4>> #
# " "= <<3,-6>> * <<-3,4>> #
# " "= (3)(-3) + (-6)(4) #
# " "= -9 -24 #
# " "= -33 #
And so the vector
#(3w * v)vec(u) = -17vec(u)#
#" "= -33<<2,2>>#
#" "= <<-66,-66>>#