How do you simplify #sqrt(108x^6y^4z^5)#? Prealgebra Exponents, Radicals and Scientific Notation Square Root 1 Answer Shwetank Mauria May 29, 2017 #sqrt(108x^6y^4z^5)=6x^3y^2z^2sqrt(3z)# Explanation: #sqrt(108x^6y^4z^5)# = #sqrt(2xx2xx3xx3xx3xx x xx x xx x xx x xx x xx x xxyxxyxxyxxyxxzxxzxxzxxzxxz)# = #sqrt(ul(2xx2)xxul(3xx3)xx3xx ul(x xx x) xx ul(x xx x) xx ul(x xx x) xxul(yxxy)xxul(yxxy)xxul(zxxz)xxul(zxxz)xxz)# = #2xx3xx x xx x xx x xxyxxyxxzxxz xxsqrt(3xxz)# = #6x^3y^2z^2sqrt(3z)# Answer link Related questions How do you simplify #(2sqrt2 + 2sqrt24) * sqrt3#? How do you simplify #sqrt735/sqrt5#? How do you rationalize the denominator and simplify #1/sqrt11#? How do you multiply #sqrt[27b] * sqrt[3b^2L]#? How do you simplify #7sqrt3 + 8sqrt3 - 2sqrt2#? How do you simplify #sqrt468 #? How do you simplify #sqrt(48x^3) / sqrt(3xy^2)#? How do you simplify # sqrt ((4a^3 )/( 27b^3))#? How do you simplify #sqrt140#? How do you simplify #sqrt216#? See all questions in Square Root Impact of this question 2536 views around the world You can reuse this answer Creative Commons License