A triangle has corners A, B, and C located at #(7 ,3 )#, #(4 ,8 )#, and #(3 , 7 )#, respectively. What are the endpoints and length of the altitude going through corner C?

2 Answers
Jul 13, 2017

The end points are #=(71/17,131/17)# and the length is #=1.37#

Explanation:

The corners of the triangle are

#A=(7,3)#

#B=(4,8)#

#C=(3,7)#

The slope of the line #AB# is #m=(8-3)/(4-7)=-5/3#

The equation of line #AB# is

#y-8=-5/3(x-4)#

#y-8=-5/3x+20/3#

#y+5/3x=44/3#...........................#(1)#

#mm'=-1#

The slope of the line perpendicular to #AB# is #m'=3/5#

The equation of the altitude through #C# is

#y-7=3/5(x-3)#

#y-7=3/5x-9/5#

#y=3/5x+26/5#................................#(2)#

Solving for #x# and #y# in equations #(1)# and #(2)#, we get

#-5/3x+44/3=3/5x+26/5#

#3/5x+5/3x=44/3-26/5#

#34/15x=132/15#

#x=142/34=71/17#

#y=3/5*71/17+26/5=655/85=131/17#

The end points of the altitude is #=(71/17,131/17)#

The length of the altitude is

#=sqrt((3-71/17)^2+(7-131/17)^2)#

#=sqrt((-20/17)^2+(-12/17)^2)#

#=sqrt(544)/17#

#=1.37#

End points are #(3,7) and (4.18, 7.71)#
Length of altitude is # 1.38# unit

Explanation:

Let #CD# be the altitude going through #C# touches #D# on line

#AB#. #C# and #D# are the endpoints of altitude #CD. CD# is

perpendicular on #AB#. Slope of #AB= m_1= (y_2-y_1)/(x_2-x_1)=(8-3)/(4-7) = -5/3 :. # Slope of #CD=m_2= -1/m_1= 3/5 #

Equation of line #AB# is # y - y_1 = m_1(x-x_1) or y- 3 = -5/3(x-7)# or
#3y-9 = -5x + 35 or 5x+3y= 35+9 or 5x+3y = 44 (1)#

Equation of line #CD# is # y - y_3 = m_2(x-x_3) or y- 7 = 3/5(x-3)# or
#5y-35 = 3x -9 or 3x-5y= -35+9 or 3x-5y = -26 (2)#

Sollving equation (1) and (2) we get the co-ordinates of D.

#15x+9y = 132 (3)#
# 15x - 25y = -130 (4)# Subtracting we get,
#34y=262 or y =131/17=7.71 ; x = (44-3*131/17)/5= (44-393/17)/5 =(748-393)/85 =355/85=4.18#
So end points are #(3,7) and (4.18, 7.71)#
Length= # sqrt((3-4.18)^2+ (7-7.71)^2)) 1.38 # unit [Ans]