How do you graph #r=3+3costheta# on a graphing utility?

1 Answer
Oct 25, 2017

Convert to rectangular form:

#x^2+y^2=3sqrt(x^2+y^2)+x#

Explanation:

Given:

#r = 3+3cos theta#

Convert from polar to rectangular coordinates using:

#r = sqrt(x^2+y^2)#

#x = r cos theta#

So multiplying the given equation by #r# we find:

#x^2+y^2 = r^2 = 3r+3r cos theta = 3sqrt(x^2+y^2) + x#

So we can put the equation:

#x^2+y^2=3sqrt(x^2+y^2)+x#

into our graphing utility to get:

graph{x^2+y^2=3sqrt(x^2+y^2)+x [-10, 10, -5, 5]}

Note carefully that this is not a circle.