Start by solving
#(x+1)/x=0#
#=>#, #x=-1# and #x!=0#
Let #g(x)=|(x+1)/x|#
The sign chart is as follows
#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaaaa)##-1##color(white)(aaaaaaaa)##0##color(white)(aaaaaaa)##+oo#
#color(white)(aaaa)##g(x)##color(white)(aaaa)##-(x+1)/x##color(white)(aaaa)##(x+1)/x##color(white)(aaaa)##(x+1)/x##color(white)(aaaa)#
In the interval #I_1=(-oo,-1)#
#-(x+1)/x-2>0#
#=>#, #(-x-1-2x)/x>0#
#=>#, #(-3x-1)/x>0#
#=>#, ##x>1/3
In the interval #I_2=(1,+oo)#
#(x+1)/x-2>0#
#=>#, #(x+1-2x)/x>0#
#=>#, #(1-x)/x>0#
#=>#, #x<1#
Therefore ,
The solution is # x in (-1/3,0) uu (0, 1)#
graph{|(x+1)/x|-2 [-10, 10, -5, 5]}