Question #6dd46
2 Answers
Explanation:
We will make use of some algebra,the well known limit
and the following:
- if
#f(x)# is continuous, then#lim_(x->a)f(x) = f(lim_(x->a)x)# - if
#f(x)# and#g(x)# have finite limits at#a# , then#lim_(x->a)f(x)g(x) = lim_(x->a)f(x)*lim_(x->a)g(x)#
#=lim_(x->0)(x^2(1+cos(x)))/((1-cos(x))(1+cos(x)))#
#=lim_(x->0)x^2/(1-cos^2(x))(1+cos(x))#
#=lim_(x->0)x^2/sin^2(x)(1+cos(x))#
#=lim_(x->0)(x/sin(x))^2(1+cos(x))#
#=lim_(x->0)(sin(x)/x)^(-2)(1+cos(x))#
#=lim_(x->0)(sin(x)/x)^(-2) * lim_(x->0)(1+cos(x))#
#=(lim_(x->0)sin(x)/x)^(-2) * lim_(x->0)(1+cos(x))#
#=1^(-2)(1+cos(0))#
#=2#
Explanation:
We use the Trigo. Identity
Reqd. Lim.