A wire in the shape of Y is hanged from two points #A# and #B#, #8# feet apart. The lower end of wire reaches a point #10# feet from #AB#. What is the shortest possible length of the wire?

2 Answers
Jun 15, 2017

Shortest length of wire that can be used is #12.31# feet.

Explanation:

The above can be better described by the following figure.

enter image source here

Now using Pythagoras theorem, if #x# is the length of verticle component of wire, lengths of tilted wires each is

#sqrt(4^2+(10-x)^2)# or #sqrt(16+100+x^2-20x)# or #sqrt(x^2-20x+116#

and total length of wire is #l(x)=x+2 sqrt(x^2-20x+116)#

This will be minimum when #(dl)/(dx)=0#

As #(dl)/(dx)=1+2xx1/(2sqrt(x^2-20x+116))xx(2x-20)=0#

or #1-(2(10-x))/sqrt(x^2-20x+116)=0#

or #sqrt(x^2-20x+116)=20-2x#

and squaring we get

#x^2-20x+116=400+4x^2-80x#

or #3x^2-60x+284=0#

or #x=(60+-sqrt(3600-4xx3xx284))/6#

#=(60+-sqrt(3600-3408))/6=(60+-sqrt192)/6#

or #x=10+-2.31# i.e. #x=12.31# or #7.69#

But #x# cannot be greater than #10#

Hence #x=7.69# and shortest length of wire that can be used is

#l(7.69)=7.69+2sqrt(7.69^2-20xx7.69+116)#

= #7.69+2sqrt21.3361=7.69+4.62=12.31#

Jun 15, 2017

The shortest total length of the wire that can be used #=16.92ft#

Explanation:

Let the length of the perpedicular #OD# dropped from the junction point #O# of Y-shaped wire frame to the horizontal line AB be #xft#.
The total height being 10ft the height of #O# will be #(10-x)ft#
Since in #DeltaAOB# #OA=OB#
Here #D# will be mid point of #AB# So #AD=BD=4ft#

By pythagoras theorem

#OA=OB=sqrt(x^2+4^2)#

So total length of the wire

#L=2sqrt(x^2+4^2)+10-x.....(1)#

To know the minimum length of wire required we impose the condtion #(dL)/(dx)=0#

So

#d/(dx)(2sqrt(x^2+4^2)+10-x)=0#

#=>(2*1/2*(2x)/sqrt(x^2+4^2)-1)=0#

#=>(2x)/sqrt(x^2+4^2)=1#

#=>(2x)^2=(sqrt(x^2+4^2))^2#

#=>4x^2=x^2+16#

#=>x=4/sqrt3#

Hence minimum length can be had by inserting #=>x=4/sqrt3# in (1)

#L_"min"=2(sqrt((4/sqrt3)^2+4^2))+10-4/sqrt3#

#=>L_"min"=2xx8/sqrt3+10-4/sqrt3#

#=>L_"min"=16/sqrt3-4/sqrt3+10#

#=>L_"min"=12/sqrt3+10=4sqrt3+10=16.92ft#