How do I determine #lim_(x->0.5^-)(2x-1)/|2x^3-x^2|#, if it exists?

1 Answer
May 17, 2018

#lim_(x->0.5^-)(2)/(-6x^2+2x)=2/[1-1.5]=2/-0.5=-4#

Explanation:

show below

#lim_(x->0.5^-)(2x-1)/|2x^3-x^2|#

since x purchase from left

#lim_(x->0.5^-)(2x-1)/-(2x^3-x^2)=lim_(x->0.5^-)(2x-1)/(-2x^3+x^2)#

#=[2(0.5)-1]/[(0.5)^2-2(0.5)^3]=[1-1]/[(0.25)-2(0.125)]#

#0/[0.25-0.25]=0/0#

since the direct compnsation product equal #0/0# we should lohpital rule

#lim_(xrarra)[f'(x)]/[g'(x)]#

#lim_(x->0.5^-)(2)/(-6x^2+2x)=2/[1-1.5]=2/-0.5=-4#