How do you convert the parametric equations into a Cartesian equation by eliminating the parameter r: #x=(r^2)+r#, #y=(r^2)-r#?

2 Answers
May 18, 2017

# x^2+y^2 -2x-2y -2xy = 0 #

Explanation:

We have:

# x=r^2 + r #
# y=r^2 - r #

Adding the equations:

# x+ y = 2r^2 => r^2 = 1/2(x+y) #

Multiplying the Equations we get:

# xy = (r^2 + r)(r^2 - r) #
# \ \ \ \ = r^4 - r^2 #

And substituting #r^2 = 1/2(x+y) # gives:

# xy = (1/2(x+y))^2 - 1/2(x+y) #

Thus the Cartesian equation is:

# xy = 1/4(x+y)^2 - 1/2(x+y) #
# 4xy = (x^2+2xy+y^2) -2(x+y) #
# 4xy = x^2+2xy+y^2 -2x-2y #
# x^2+y^2 -2x-2y -2xy = 0 #

May 18, 2017

#x^2+y^2-2xy-2x-2y = 0#

Explanation:

We have:

#{(x=r^2+r),(y=r^2-r):}#

Summing the equations we have:

#x+y = 2r^2#

and subtracting the second from the first:

#x-y = 2r#

or:

#r=(x-y)/2#

Then:

#x+y = 2((x-y)/2)^2#

#x+y = (x-y)^2/2#

#2x+2y = x^2-2xy+y^2#

and finally:

#x^2+y^2-2xy-2x-2y = 0#

This is the equation of a conic, so we can calculate the invariants:

#det ((1,-1,-1),(-1,1,-1),(-1,-1,0)) = -4#

The cubic invariant is non null so the conic is non-degenerate,

#det( ( 1,-1),(-1,1)) = 0#

the quadratic invariant is null so the conic is a parabola.

graph{x^2+y^2-2xy-2x-2y=0 [-213.9, 213.8, -106.2, 107.5]}